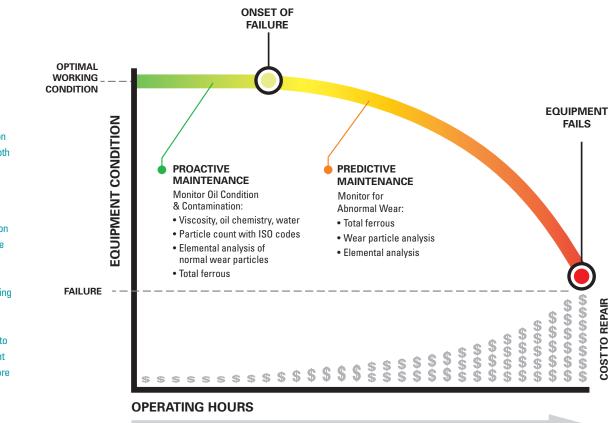


Solutions for Power Generation and Industrial Plants


In-service Oil Analysis for Machine Condition Monitoring

Since the reliable operation of high value, fixed assets is critical to all industrial plants, predictive maintenance programs are implemented to manage machinery uptime.

In-service oil analysis is a key machine condition monitoring technique for Condition Based Maintenance (CBM) and Reliability programs. It complements vibration analysis, thermography and other predictive maintenance technologies. In the time it takes external laboratories to return oil sample results, machinery condition can change significantly. On-site oil analysis eliminates this wait and enables immediate decision making.

Corrosion and wear cause surface degradation of the lubricated surfaces in machinery and are the root causes of most mechanically-induced equipment downtime. Corrosion is caused by water or other fluids reacting with metal surfaces, while wear is caused by surface abrasion, adhesion and fatigue.

Oil analysis provides early indications of equipment wear and identifies the root causes of corrosion.

The P-F Curve (Potential-Failure Curve) illustrates how in-service oil analysis provides critical information on machine condition in both Proactive and Predictive Maintenance periods.

In the Proactive period, oil condition and contamination monitoring help prevent the onset of the root causes of machine failure. In the Predictive period, monitoring the increasing severity of wear particles allows maintenance work orders to be executed for component replacement or repair before catastrophic failure.

As part of a proactive maintenance program, on-site oil analysis delivers rapid results with immediate decision making to:

- Lower operating costs
- Reduce unscheduled downtime
- Increase machine availability
- Extend equipment life
- Decrease total lifecycle equipment costs
- Provide immediate retest capability

$\operatorname{Trivector}^{\mathsf{T}}$ – oil and machine health simplified

The TriVector[™] is a simple representation of the integrity of the lubrication system and the health of the machine itself. The Trivector indicates the degree of health in each vector. Each vector is a representation of Alarm Limits based on underlying parameters, such as viscosity, water contamination, acid number, oxidation, total ferrous, particle count and ISO code, large ferrous particle count, etc.

The following questions can be answered:

Is the machine healthy?
Can I predict when the machinery will fail?
Can I predict when the machinery will fail?
Is it the right oil?
Is the oil fit for use?


► Is the oil dry?

Is the oil clean/ free of dirt?

MiniLab Series

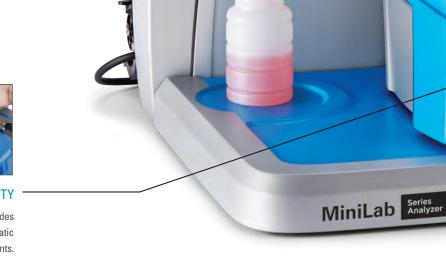
4 simple tests and less than 15 minutes to comprehensive oil analysis

Can be operated on-site by plant staff; no chemist required.

ELEMENTAL ANALYSIS

The elemental analyzer provides measurement of 24 elements to identify individual contaminants, wear metals and the elemental composition of additives.

3000


PARTICLE COUNT AND FERROUS MONITOR

The direct imaging particle counter and ferrous monitor provides particle counts and ISO codes, wear classification, ferrous particle counts & size distribution, and total ferrous measurement.

VISCOSITY

The portable viscometer provides high accuracy 40°C kinematic viscosity measurements.

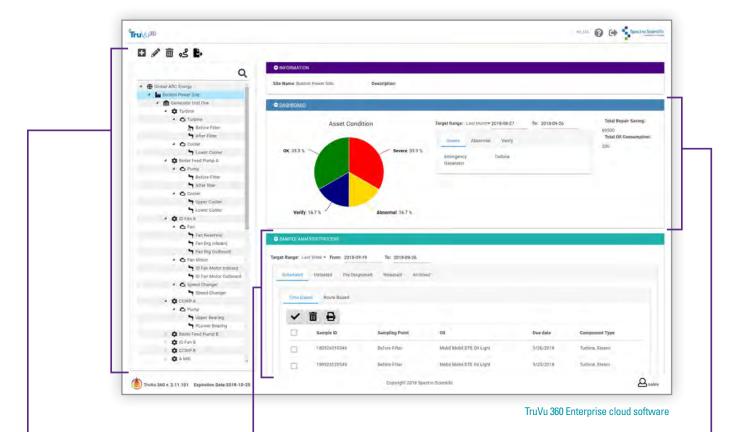
Trivector reports on machinery health


Easy to interpret results with Trivector sample and trend reports.

			Boston Power	Site			
	Spectro	Scientific	Location:		Genérator L	Init One	
		Attinuity in principal	UND D	Bollar I	leed Pump A	Pump	
				Bone i	Befor	Filter	: \
			Model			-	-
	() N12		Machine Type		Pump, Cer	erilugal.	
			Observations : Particle court (15)		NUT: Particle of	ant (ISQ 14) is a	werety toget
	11/2		Diagnostics :				
	111/		 Secondary source Suspect source 			NO SUMPLY.	Caminainta.
8		411 2	Wearing compo		apecied.		
			Recommended - Clean system of		anist ann		
		25	Additional Rec				
	0	1	100 C				25 Sep 2
							43 Seb 2
		41.0.4	-				
1. Stel Telus	47	Sample (D	180925121255	100925121221	180925114209	180925114712	180925131
Niki		Sampled or	21 Sep 2018	21 Aug 2215	25,24,2918	25 Jun 2118	28 May 201
		Received on In Total	28 Deg 2015	25 Aug 2018	21.711.51.4	28-309-2018	21 May 201
		h Ol			_	_	
		Top yo (L)		1			
			A	٠	٠	0	Â
-	trin	.099	<1.00	1.48	<1.00	*1,09	<1.00
	Leat	дря –	<1.00	8.74	1.84	244	41,00
	Copper	100	<1.00	3.81	2.11	<1.00	=1.00
	Fe Wear Severity	Anter .	1.43	9.13	18.33	6.63	1.43
	Chrone - Chrone	uper .	41.00	<1.00	<1.00	<1.00	<1.00
ML.	Nickel	1000	<1.00	1.70	1.10	<1.00	*1.00
View	Akeninam	60m	<1.00	<1.00	<1.00	<1.00	<1.00
	Titeriam	0.077	<1.00	<1.00	<1.00	<1.00	<1.00
	Shet	These of the local division of the local div	<1.00	<1.00	<1.00	*1.00	×1.00
	Ammony	April	0.00	0.00	0.00	0.00	0.00
	Cadmium	2pm	0.34	4.87	3.57	7.37	0.34
	Manganese	100	1.47	7.94	6.54	2.24	1.47
	Secon	200	4.40	7.48		1.40	4.40
	150 4406 Code (>		19	. 18	19	- H	
	150 4405 Code (*		10	- 16	16	- 16	54
M.	180 4406 Code (P			11		11	10
uomanination		(pm	20.72	4.42	6.82	10.22	20.72
	Sodium Variation	Abu:	<1.00	2.40	1,40	<1.00	+1.00
	Variadium. Potassam	1997	<1.00	2.15	6.65	+1.00	*1.00
		000		5.58	4.68		0.38
		my screep animum?	0.58	1.44	0.76	0.54	0.38
	TAN			144	0.90	0.84	0.90
_	Oxidation		101.0				
	Oxidation Visc 40	191	101.2		-1.00	-1.00	
	Oxidation Vini: 40 Molybdienum	asta Japan	<1.00	<1.00	<1.00	<1.00	<1.00
M. Chemistry	Oxidation Visit 40 Molybdeoum Calcium	atter Attent	<1.00 21.68	<1.00 58.08	71.38	82.18	21.65
	Oxidation Visc 40 Molybdiesum Caksum Magnesium	atte Apen Apen Apen	<1.00 21.68 1.07	<1.00 58.08 13.37	71.38	82.18 9.97	21.68
	Oxidation Visit 40 Molybdeoum Calcium	atter Attent	<1.00 21.68	<1.00 58.08	71.38	82.18	21.68

CHEMICAL ANALYSIS

The infrared spectrometer measures Total Acid Number (TAN), oxidation and water for machinery oils and hydraulics.


MiniLab Series Software

The TruVu 360 software is a browser-based platform installed on a company network, a local PC or accessed using the Spectro Scientific Cloud Hosting Service. The TruVu 360 Device Console can be installed on a local PC along with the MiniLab instrument software.

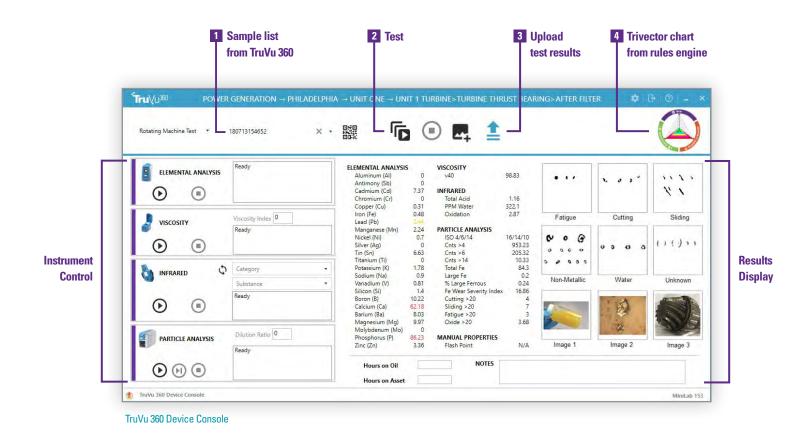
TruVu 360 delivers a best practice for the on-site oil analysis process and it provides performance dashboards at the asset, plant and corporate level.

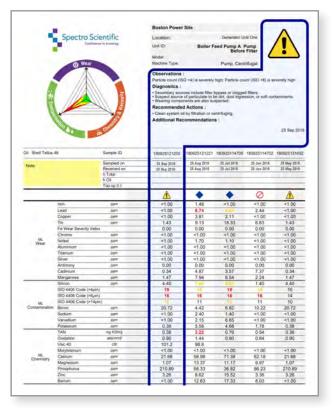
It unifies asset trending of oil condition, chemistry and machinery wear with automated diagnostics and recommended maintenance actions, and it provides maintenance and oil savings tracking for assets.

The Diagnostics Sets can be adapted to users' asset requirements including both automatic diagnostics or user editable functions at the individual asset level.

ASSET & TOOL BAR

- Create asset database with provided templates of component types.
- Customize your own or import existing asset structure.
- Assign pre-configured alarm limits that can be adjusted at the component level based upon operating history.
- Assess alarm trends to refine alarm limits.


SAMPLE ANALYSIS PROCESS


- Track samples that are planned, in process and tested.
- Review results and software-generated observations, diagnostics and recommendations.
- Add additional notes and observations before sample report is released.

DASHBOARD

Dashboards bring visibility of lubricant management and savings at the asset, plant and corporate level:

- Oil analysis results by category
- Total repair savings
- Total oil consumption

TruVu 360 report

Reports

Trend reports are automatically generated including observations and recommended actions based upon alarm limit sets employed. Manual review and edits can be made before report release and automatic distribution.

TruVu 360 trending chart and historical sample data

MiniLab Evolution

5200 MiniLab vs MiniLab 153

The MiniLab Series is the next generation of Trivector on-site oil analyzers replacing the 5200 MiniLab.

	5200 MINILAB	MINILAB 153
Wear	Large Ferrous content, trending only	Total ferrous particle content (ppm)
	Wear Debris Analysis (WDA) (Optional)	Image import from any file for attachment to sample report
		Automatic wear particle shape classification, count & distribution
		Large Ferrous content, ppm
		Wear elements: Fe, Cu, Pb, Mg, Ag, Sn
Contamination	Particle count & distribution, ISO codes	Particle count & distribution, ISO codes
	Emulsified water only	Dissolved water (ppm)
		Free water (ppm)
		Glycol contamination for engine oils
		Contaminate elements: Si, Na
Chemistry	Dynamic viscosity @ room temperature	Kinematic viscosity @ 40°C
	Dielectric, trending only	Fluid Integrity index, trending only
		Oxidation
		Total Acid Number (TAN)
		Nitration, Sulfation, Anti-wear additive, Total Base Number (TBN), and soot for engine oils
		Additive elements: Ca, P, Zn, Mg, Ba, Mo
Application	Typical mineral and synthetic lubricant and hydraulics oils for industrial rotating machinery. Not suitable for backup generators.	Mineral and synthetic lubricant and hydraulics for industrial rotating machinery, plus engine oil for backup generators and ground fleet, and special lubricants such as phosphate esters and PAG.

Oil library database

The MiniLab Series includes an extensive industrial oil library database to analyze in-service oils as a variety of lubricants and fluids are used in industrial equipment. The following fluid categories can be tested:

FLUIDS	ELEMENTAL	CHEMISTRY	PARTICLE COUNT & FERROUS	VISCOSITY
Mineral oil based Hydraulic fluids and lubricants	Y	Y	Y	Y
Synthetic hydrocarbon based hydraulic fluids and lubricants	Y	Y	Y	Y
Ester-based Lubricant blends	Y	Y	Y	Y
Oil Soluble Polyglycols (OSP)	Y	Y	Y	Y
Organic Esters (OE)	Y	Y	Y	Y
Phosphate Esters (Fyrquel/Skydrol)	Y	Y	Y ¹	Y
Polyalkylene Glycols (PAG)	Y	Y	Y ¹	Y
Poly Alpha Olefins (PAO)	Y	Y	Y	Y
Polyinternal Olefins	Y	Y	Y	Y
Polyol Esters (POE)	Y	Y	Y	Y
Grease	Y	Y ²	N	N
Mineral Transformer Oil	Y	N	Y	Y

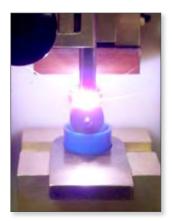
1: Require factory installed Skydrol tube and fitting kits and compatible solvent 2: Oxidation and water (absorbance units) for trending

Typical limits for machinery

Factory libraries of component types, reference oils and alarm limits are provided and additional parameters and limits can be added by the user.

		Turbine, Steam				- 10			
TriVector	Parameter	Diagnostic	ADAPTIVE RULE ENGINE (B	<u>eta)</u>					
Wear	Iron	Suspect source to be wear of shaft, reduction gear	Wear Contami	nation Chem	histry			Turbine, Steam	
Wéar	Lead	Suspect source to be wear of bearings, piping, or s	Parameter	Limit Type	Abnormal	Severe	Reference	Maintenance Actions (Abnormal)	Maintenance Actions (Severe)
Wear	Copper	Suspect source to be wear of bearings, bushings, c					Value		
Near	Tin	Suspect source to be wear of shaft, reduction gear	Iron	Absolute	5	10		 Monitor. Resample at half of normal sampling frequency. 	Investigate equipment urgently.
Vear	Total Ferrous	Suspect source to be wear of shaft, reduction gear	Lead	Absolute	3	5		Monitor. Resample at half of	 Investigate equipment urgently.
iear	Large tron	Suspect source to be wear of shaft, reduction gear	Copper	Absolute	2	5		normal sampling frequency. Monitor. Resample at half of	 Investigate equipment urgently.
Near	Fe Wear Severity Index	Suspect source to be wear of shaft, reduction gear						normal sampling frequency.	
Contamination	Boton	Suspect source to be contamination from lubrican	Tin	Absolute	5	10		 Monitor. Resample at half of normal sampling frequency. 	 Investigate equipment urgently.
Contamination	Silicon	Suspect source to be contamination from dirt, dus	Total Ferrous	Absolute	10	20		 Monitor. Resample at half of normal sampling frequency. 	Investigate equipment urgently.
contamination	Water, ppm	Suspect source to be water ingress from labyrinth	Large Iron	Absolute	0.1	0,2		Monitor. Resample at half of	Investigate equipment urgently.
Contamination	ISO 4406 Code (>4µm)	Suspect source of particulate to be dirt, dust ingre Secondary sources include filter bypass or clogged	Fe Wear Severity Index	Absolute	1	4		normal sampling frequency. Monitor, Resample at half of	 Investigate equipment urgently.
								normal sampling frequency.	
Contamination	ISO 4406 Code (>6µm)	Suspect source of particulate to be dirt, dust ingre Secondary sources include filter bypass or clogged	Boron	Absolute	15	20		 Monitor. Resample at half of normal sampling frequency. 	Investigate equipment urgently.
Contamination	ISO 4406 Code (>14µm)	Suspect source of particulate to be dirt, dust ingre Secondary sources include filter bypass or clogged	Silicon	Absolute	5	10		 Monitor. Resample at half of normal sampling frequency. 	Investigate equipment urgently.
Chemistry	Calcium	Suspect contamination from lubricant additives m	Water, ppm	Absolute	100	200		 Monitor. Resample at half of normal sampling frequency. Check 	 Install a water removal system (vacuum dehydration) system.
Chemistry	Phosphorus	Suspect contamination from lubricant additives m system.						integrity of seals, breather, or cooler system coupling.	Check integrity of seals, breather or cooler system coupling.
Chemistry	Zinc	Suspect contamination from lubricant additives mi	ISO 4406 Code (>4µm)	Absolute	17	18		 Monitor. Resample at half of normal sampling frequency. 	 Clean system oil by filtration or centrifuging.
Chemistry	TAN	Suspect TAN increase due to overheating, additive localized hot spots.	ISO 4406 Code (>6µm)	Absolute	14	15		 Monitor. Resample at half of normal sampling frequency. 	Clean system oil by filtration or centrifuging.
hemistry	Oxidation	Suspect oxidation rise due to overheating, localize	ISO 4406 Code (>14µm)	Absolute	11	12		 Monitor. Resample at half of normal sampling frequency. 	 Clean system oil by filtration or centrifuging.
themistry	Visc 40	Oil may be contaminated, severly degraded or had	Calcium	Absolute	15	20		Feed and bleed reservoir with correct lubricant.	Change oil with approved lubricant. Check seal integrity.
			Phosphorus	Absolute	100	200		 Monitor. Resample at half of normal sampling frequency. 	Change oil with approved lubricant. Check seal integrity.
Vu 260 limit t	able grouped by Triv	in atox no romatara	Zinc	Absolute	10	25		Monitor. Consider feed and bleed.	 Investigate equipment urgently.

Particle analysis and wearing mechanism

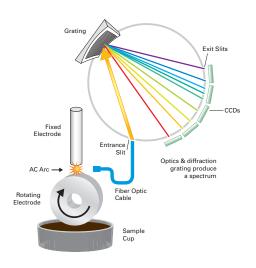

With total ferrous, large ferrous total particle counts and ISO codes, wear particle counts users can make informed decisions to identify oil drain points, corrosive wear and the onset of a serious abnormal machine wear mechanism.

MONITORING	TOTAL Fe, ppm	LARGE FERROUS CONTENT, ppm	LASERNET LARGE PARTICLES >20 µm	LASERNET CLASSIFIER
	Establish constant wear rate	Dynamic equilibrium levels	Dynamic equilibrium levels	Dynamic equilibrium levels
Oil change interval	Reaches limit level	NA	NA	NA
Onset of corrossive wear	Increase in rate	No change	No change	No change
Transition into abnormal wear mode	Increase in rate	Increase	Increase	Increase – cutting/sliding/fatigue
Ongoing severe wear mechanism (breakdown shear mixed layer)	Same or decrease in rate	Increase	Increase	Increase – cutting /sliding/ fatigue
Temporary wear rate change due to increased load and speed	Increase in rate	No change	No change	No change
Onset of external contamination	No change	No change	Increase	Increase – non-metallic
3 Body abrasive mechanism iron	No change	Increase	Increase	Increase – cutting/sliding
3 Body abrasive mechanism non-ferrous (copper, aluminum)	No change	No change	Increase	Increase – cutting/sliding
Onset of rolling contact failure	No change	Increase	Increase	Increase – fatigue

SpectrOil 100 Series instrument can be purchased separately.

Sample consumed using RDE technology is optically analyzed with AE spectroscopy to detect elements.

Elemental Analysis


The SpectrOil 100 Series analyzes small particulate wear, lubricant additives and contaminants for trace quantities of elements dissolved or suspended as fine particles. Using the proven rotating disc electrode (RDE) technique, the SpectrOil 100 Series has become the workhorse of industrial, commercial and military oil analysis laboratories requiring rapid analysis of wear metals, contaminants and additives in lubricants.

Coolant, wash-down water and JOAP calibrations are available in addition to inservice lubricating oil and hydraulic fluid analysis.

- Measures ppm levels of up to 32 elements in less than 30 seconds
- Easy to operate no sample preparation, gases, coolants or solvents needed
- Compliant with ASTM D6595 for used oil analysis

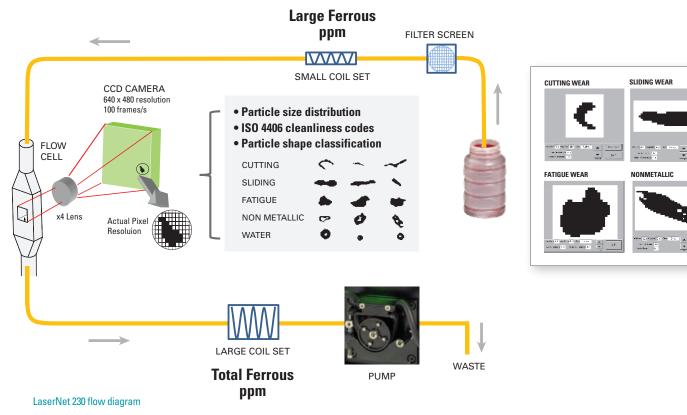
On-site oil analysis provides greater insight into contaminant sources by linking elemental parameters with the probable source:

ELEMENT	Oil Chemistry – metallic additives possible sources
Sodium	Corrosion inhibitor additive, also indicates coolant leak into oil, can also be road salt, sea water, ingested dirt
Boron	Corrosion inhibitor additive, antiwear/antioxidant additive; can indicate coolant leak, grease contamination
Magnesium	Detergent/dispersive additive, can also be alloying element in steels
Calcium	Detergent/dispersant additive, alkaline reserve additive for high sulfur fueled engines, can be grease contamination,
Molybdenum	Solid/liquid antiwear additive, alloy in bearing and piston rings
Barium	Corrosion inhibitors, detergents, rust inhibitors
Zinc	Antiwear, corrosion inhibitors, anti-oxidants, alloying element for bearings, thrust washers, galvanized cases
Phosphorus	Antiwear, corrosion inhibitors, anti-oxidants additives, EP additives

SpectrOil 100 Series rotating disc electrode optical emission spectrometer schematic

Emission spectrum of iron

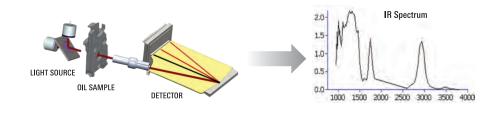
Particle Count and Ferrous Monitor


The LaserNet 200 Series provides particle counts and codes, large wear particle classification and ferrous wear monitoring.

- Particle count, size distribution and codes (ISO 4406, NAS 1638, NAVAIR 01-1A-17, SAE AS 4059, GOST, ASTM D6786, HAL, and user defined bins)
- Differentiates contaminants (silica and fibers from machine wear metal)
- Classifies wear particles, stores images, and reports particle count for each wear type of Cutting, Sliding, Fatigue, Fibers and Nonmetallics
- Ferrous Monitor measures total ferrous content in the sample and large ferrous
- Widest range up to 5,000,000 particles/ml
- Test oil viscosity up to ISO320 without dilution
- Images through dark fluids containing up to 2% soot
- Error corrections for water and air bubbles

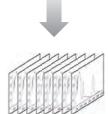
Options include configurations without the ferrous monitor and wear classification.

FluidScan 1000 Series handheld infrared spectrometer can be purchased separately.


The oil library contains various categories of fluids. The industrial library provided with the MiniLab series includes the Comprehensive Water Solution and the Industrial Fluid Oil Library.

	Industrial
CATEGORY	Fluid Library
ASTM EP Gear/Hydro	~
ASTM Petroleum Crankcase	v
ASTM Polyol Ester	v
BIODIESEL FEEDSTOCK	
CHILLER	v
ENGINE	v
ENGINE-HEAVY DUTY	
ENGINE-HFO	
ENGINE-NAT GAS	
ETHANOL IN GASOLINE	
FAME	
FAME in DIESEL	
GEAR-PRESSURE	v
GEAR-SPLASH	V
HEAT TRANSFER	v
HYDRAULIC	v
HYDRAULIC-FIRE RESISTANT	V
SLIDEWAY	V
TRANSMISSION	
TURBINE-AERO	V
TURBINE-CCGT	V
TURBINE-STEAM	V

Chemical Analysis


The FluidScan[®] 1000 Series oil chemistry analyzer determines when in-service oil is no longer fit for use due to oil degradation or the ingress of water or glycol. It is fast and easy to use, with just one drop of oil needed for the sample and less than one minute for test results. The analyzer includes an extensive oil library; additional oils can be added by the user.

- Compliant to ASTM D7889 "Standard Test Method for Field Determination of In-service Fluid Properties Using IR Spectroscopy"
- High correlation to TAN and TBN laboratory tests conducted with ASTM D664 and D4739
- Patented, Comprehensive Water Measurement option extends range to 6.5%. (Included with all MiniLab systems.)
- Fluid Integrity Index

Built-in Fluid Reference Library

Measured Fluid Properties

FluidScan operating principle

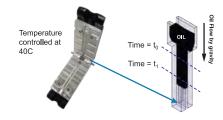
Water measurement range

Viscosity

The MiniVisc 3000 Series provides fast, accurate 40°C kinematic viscosity measurements for easy detection of viscosity variations caused by contamination, mix-up and oil degradation.

- Solvent free, portable, and easy to use
- Viscosity range 1-700 cSt @40°C
- Accuracy +/- 3% to NIST viscosity standards
- Fast results: ISO 15 ~10 seconds, ISO 320 ~ 3 minutes

For machinery oils, the 40°C kinematic viscosity is used as the reference value. Engine oils operate at higher temperatures than rotating machinery, so they require V100°C kinematic viscosity. The Viscosity Index of an oil is a parameter that relates the V40°C measurement value to the V100°C value. A reference Viscosity Index value can be entered in the viscometer and both the measured V40°C viscosity and the calculated V100°C viscosity values are displayed.


Positive displacement pipette

Open the two parallel plates for easy cleaning.

MiniVisc 3000 Series portable viscometer can be purchased separately.

MiniVisc 3000 Series kinematic viscometer schematic

Total Ferrous

The MiniLab 33 includes the FerroCheck, a portable ferrous analyzer that measures the total ferrous content of a sample. It is easy to operate; simply insert the sample vial with fluid sample to measure.

- Small sample requirement with results in 30 seconds
- No sample preparation and no solvents required to clean
- Measurement range 0-10,000 ppm for oil, 10-150,000 ppm for grease

Grease boat and sample introduction vials

FerroCheck 2000 Series portable ferrous analyzer can be purchased separately.

Four MiniLab Options. Which One is for You?

MiniLab 153 – provides a complete oil analysis report with elemental analy analysis, solid and w and viscosity. It is ide manufacturing plants

MiniLab 53 - provide comprehensive wear contamination, fluid

MiniLab 33 - provide ferrous wear, fluid ch

MiniLab 23 - provide including viscosity, c

*

Chemistry & Viscosity

Wear

Ö

provides a complete oil analysis report analysis, comprehensive wear particle and water contamination, fluid chemistry is ideal for large power plants and plants with many assets.	F				
rovides a Trivector report with wear particle analysis, solid and water fluid chemistry and viscosity.		Minish E	Mi	niLab 153 – <i>4 test</i>	S
ovides a basic Trivector report with total uid chemistry, water in oil and viscosity.	• • • •			MiniLab 53 -	- 3 tests
ovides basic oil condition information sity, chemistry and water in oil.	• • • • • •				
Wear Age		<		MiniLab 3	3 – 3 tests
& chemisty			4	MiniLab 23	-2 tests
PARAMETER	Elemental	Particle Count and Ferrous ASTM METHOD D7596	Ferrous	Viscosity ASTM METHOD D8092	Chemical ASTM METHOD D7889
Particle count and ISO codes		v			
Non-metallic particle count, distribution and images		v			
Sodium and Silicon	v				
Total Water					 ✓
Viscosity				v	
Total Acid Number (TAN)					~
Oxidation					v
Fluid Integrity					v
Total Base Number (TBN), Oxidation, Nitration, and Sulfation for engine oils					<i>v</i>
Magnesium, Calcium, Barium, Zinc, Molybdenum, and Phosphorus	~				
Wear particle images and counts		v			
Total Ferrous content, ppm		✓	v		
Large Ferrous content, ppm		v			
Copper, Silver, Chromium, Titanium, Aluminum, Nickel, Iron, Manganese, Lead, Tin, Cadmium, and Vanadium	v				

19

ANALYTICAL RANGE AND REPEATABILITY

OUTPUT	ANALYTICAL RANGE	REPEATABILITY
Particle count and size distribution: ISO codes per 4402/4406, other codes selectable	Particle count 4-100 µm	\leq 6% RSD
Large Ferrous, ppm	0.02-5 ppm	\leq 5% RSD
Total Ferrous, ppm	10-2,000 ppm	\leq 5% RSD
Wear particle counts by mode: fatigue, sliding, cutting, non-metallic, fibers	20-100 μm	
40°C Kinematic viscosity, cSt	1-320 cSt at 40°C 320-700 cSt at 40°C	≤ 3% RSD ≤ 5% RSD
Total Acid Number (TAN), mg KOH/g	0-6 mg KOH/g	\leq 3% RSD
Total Base Number (TBN), mg KOH/g	0-70 mg KOH/g	\leq 3% RSD
Oxidation, abs/0.1 mm	0-150	\leq 3% RSD
Nitration, abs/cm	0 -50	≤ 3% RSD
Sulfation, abs/0.1 mm	0-75	\leq 3% RSD
Fluid Integrity	Index, varies by oil	≤ 3% RSD
Water, dissolved, ppm	100 ppm-saturation*	\leq 3% RSD
Water, free, ppm	0.03-6.5% (300-65,000 ppm) ≤ 25% RSD	
Elemental concentration of 23 elements, ppm	Elemental analysis range and repeatability vary with element	
*Oil specific. RSD = Relative Standard Deviation.		

Validation Standards and ASTM Standards

Validation standards are supplied for all MiniLab Series instrumentation. These NIST traceable standards support internal quality programs and compare current instrument performance against factory calibration.

All instruments in the MiniLab Series have an associated ASTM Standard Test Method.

ACCESSORIES & CONSUMABLES

Sample Preparation Equipment

Sample preparation equipment such as the homogenizer, ultrasonic deaerator, electrode sharpener and consumables for 100 samples is included with each MiniLab 153 Standard Accessories Kit.

SAMPLE PREPARATION - 3 SIMPLE STEPS

- 1. Sharpen electrode
- 2. Homogenize the sample for water measurement
- 3. Ultrasonically degas the sample for particle analysis

Consumables

Spectro Scientific consumables are selected and carefully tested with all Spectro Scientific instruments to ensure consistent, repeatable results. Always use Spectro Scientific certified consumables for best results.

SERVICE CONTRACTS AND REPAIR

Spectro Scientific's service offerings for the MiniLab Series include:

- **System Installation & Training** for instrument operation and routine maintenance.
- Service Contracts for extended warranty and preventive maintenance.
- Field Repair by certified customer service engineers on site.
- In-house Instrument Calibration, Maintenance, Repair, and Upgrades performed at our facility near Boston, MA.
- On-line Training

MiniLab Series Product Information

For MiniLabs with TruVu 360 Basic, software is provided in a USB/DVD media pack. For MiniLabs for TruVu 360 Hosted Service, Hosting service and User Licenses are ordered separately.

800-00196	MiniLab 153, 115VAC, 60HZ, with TruVu360 Basic software and Win 10 Pro Workstation					
800-00199	MiniLab 153, 220VAC, 50HZ,with TruVu360 Basic software and Win 10 $\mbox{Pro Workstation}$					
800-00161	MiniLab 153, 115VAC, 60HZ, for TruVu360 Hosted Service and Win 10 Pro Workstation					
800-00164	MiniLab 153, 220VAC, 50HZ, for TruVu360 Hosted Service and Win 10 Pro Workstation					
800-00192	MiniLab 53, 115VAC, 50/60Hz, with TruVu 360 Basic software					
800-00193	MiniLab 53, 220VAC, 50/60Hz with TruVu 360 Basic software					
800-00165	MiniLab 53, 115VAC, 50/60Hz, for TruVu 360 Hosted Service					
800-00166	MiniLab 53, 220VAC, 50/60Hz, for TruVu 360 Hosted Service					
800-00188	MiniLab 33, 115VAC, 50/60Hz, with TruVu 360 Basic software					
800-00189	MiniLab 33, 220VAC, 50/60Hz, with TruVu 360 Basic software					
800-00167	MiniLab 33, 115VAC, 50/60Hz, for TruVu 360 Hosted Service					
800-00168	MiniLab 33, 220VAC, 50/60Hz, for TruVu 360 Hosted Service					
800-00184	MiniLab 23, 115VAC, 50/60Hz, with TruVu 360 Basic software					
800-00185	MiniLab 23, 220VAC, 50/60Hz, with TruVu 360 Basic software					
800-00169	MiniLab 23, 115VAC, 50/60Hz, for TruVu 360 Hosted Service					
800-00170	MiniLab 23, 220VAC, 50/60Hz, for TruVu 360 Hosted Service					
FOR HOSTED SER	VICE					
100-00795	Annual TruVu 360 Hosting Service fee on Spectro Scientific Cloud server (per site)					
100-00744	TruVu 360 Enterprise user license, 1 year, 1 user					
100-00741	TruVu 360 Site user license, 1 year, 1 user					
TruVu 360 BASIC (OPTIONS					
750-00156	TruVu 360 Basic to Pro license upgrade (perpetual)					
100-00886	Additional TruVu 360 Pro Site User license (perpetual)					
ACCESSORIES AN	ID CONSUMABLES					
800-00073	MiniLab 153 Standard Accessories Kit					
800-00032	MiniLab 153 Consumables Kit for 500 samples					
800-00072	MiniLab 53 Standard Accessories Kit					
400-00088	MiniLab 53 Consumables Kit for 500 samples					
800-00063	MiniLab 33 Standard Accessories Kit					
800-00064	MiniLab 33 Consumables Kit for 500 samples					
800-00039	MiniLab 23 Standard Accessories Kit					
800-00040	MiniLab 23 Consumables Kit for 500 samples					
600-00123	MiniLab 153 Validation Standards Kit					
600-00122	MiniLab 53 Validation Standards Kit					
600-00120	MiniLab 33 Validation Standards Kit					
600-00119	MiniLab 23 Validation Standards Kit					
FL360	All Libraries License for FluidScan					
800-00171	Windows 10 Pro Workstation, with TruVu 360 Device Console					

	,			
PRODUCT INFOR	MATION			
Applications	Mineral and synthetic lubricants including gear, engine, hydraulic, turbine, and distillate fuels			
Methodology	ASTM D7596, ASTM D7889, ASTM 40831, ASTM D6595			
Calibration	Factory calibrated, field calibration not required. Validation and standardization fluids supplied.			
OPERATIONAL SI	PECIFICATIONS			
Environmental Requirements	5-40°C ambient temperature, 10-80% RH non-condensing, 2000 m maximum altitude			
Sample Volume	30-50 ml, varies with viscosity			
Solvents	LaserNet Flush, lamp oil or odorless kerosene.			
USER INTERFACE	SPECIFICATIONS			
Software/ Operating System	Personal computer with Windows 10 Pro or Windows 7 Pro, 32 or 64 bit, US English version. Quad core microprocessor speed 2.6 GHz or higher and 8 GB RAM minimum.			
POWER REQUIRE	MENTS			
Power	MiniLab 153: 1 Phase power, 1200 W (max) MiniLab 53/33/23: 1 Phase power, 110 W (max)			
MECHANICAL SP	PECIFICATIONS			
Dimensions (H x W x D)	MiniLab 153: 71 cm x 214 cm x 66 cm (28" x 84" x 26") MiniLab 53: 35 cm x 50 cm x 53 cm (13.8" x 19.7" x 21") MiniLab 33: 14 cm x 69 cm x 48 cm (5.5 x 27" x 19") MiniLab 23: 10 cm x 51 cm x 48 cm (4" x 20" x 19")			
Weight	MiniLab 153: 84 kg (185 lbs) MiniLab 53: 14 kg (31 lbs) MiniLab 33: 9 kg (22 lbs) MiniLab 23: 6 kg (14 lbs)			
COMPLIANCE				

CE Mark-EMC directive, RoHS

	TruVu 360 Basic	TruVu 360 Pro	TruVu 360 Hosting Service
License	None	One included with TruVu 360 Pro upgrade	Requires Site User or Enterprise User license
Duration	Perpetual use	Perpetual use	Annual fee
Installation	On Local PC	Local PC or on company network	Hosted by Spectro Scientific
Use case	Single site, No login	Single site/MiniLab, 1 user login per license Pro Site User licenses can be assigned with Site Admin (primary user), Operator, or Reader privileges.	Single or Multiple sites/ MiniLabs Site User licenses can be assigned with Site Admin (primary user), Operator, or Reader privileges. Enterprise Users can access multiple sites.
Email report distribution	None	Allows email notifications	Allows email notifications

AMETEK Spectro Scientific | One Executive Drive, Suite 101, Chelmsford, MA 01824-2563 978-431-1120 | www.spectrosci.com | sales@spectrosci.com | An ISO 9001:2015 company

Copyright © 2018 Spectro Scientific. All rights reserved. While every effort is made to assure the information in this document is accurate, Spectro Scientific does not accept liability for any errors or mistakes that may arise. Specifications are subject to change without notice. Industrial_BRv3_2019-04-05

